TD 15: Convexité

Exercice 1. Étudier la convexité de $f: x \mapsto |x|$.

Exercice 2. Soit $f: I \to \mathbb{R}$ une fonction convexe et $g: I \to \mathbb{R}$ une fonction affine. Montrer que f+g est convexe.

Exercice 3. Soit $f: I \to J$ et $g: J \to \mathbb{R}$ deux fonctions convexes. Montrer que si g est croissante, alors $g \circ f$ est convexe. Donner un contre-exemple si on omet l'hypothèse « g est croissante ».

Exercice 4 (Inégalités de convexité). Les questions suivantes sont indépendantes :

1) Montrer que $x \mapsto \ln(\ln x)$ est concave sur $]1, +\infty[$. En déduire :

$$\forall a, b > 1$$
 $\ln\left(\frac{a+b}{2}\right) \ge \sqrt{\ln a \ln b}$

2) Montrer que $x \mapsto -\ln x$ est convexe. En déduire :

$$\forall x_1,\ldots,x_n>0$$
 $\sqrt[n]{x_1\cdots x_n}\leq \frac{x_1+\cdots+x_n}{n}$

3) Démontrer: $\forall x_1, \dots, x_n \in \mathbb{R}_+^*$ $\frac{n}{\frac{1}{x_1} + \dots + \frac{1}{x_n}} \le \frac{x_1 + \dots + x_n}{n}$

Exercice 5. En utilisant un argument de convexité, montrer que

$$\forall x > 0$$
 $\ln x \le x - 1$ et $\forall x \in \left[0, \frac{\pi}{2}\right]$ $\frac{2}{\pi}x \le \sin x \le x$

Exercice 6. Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction convexe.

- 1) Montrer que si f admet un minimum local en a, alors ce minimum est global.
- 2) Que peut-on dire si *f* admet un maximum local en *a* ?

Exercice 7. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction convexe majorée. Montrer que f est constante.